Determination of $2 \beta_{S}$ in $B_{S}{ }^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$decays in the presence of a $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave contribution

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP09(2009)074
(http://iopscience.iop.org/1126-6708/2009/09/074)
The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 01/04/2010 at 13:42

Please note that terms and conditions apply.

Determination of $2 \beta_{\mathrm{s}}$ in $\mathrm{B}_{s}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$decays in the presence of a $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave contribution

Yuehong Xie, Peter Clarke, Greig Cowan and Franz Muheim
School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K.
E-mail: Yuehong.Xie@cern.ch, peter.clarke@ed.ac.uk, g.cowan@ed.ac.uk, f.muheim@ed.ac.uk

Abstract: We present the complete differential decay rates for the process $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$ including S-wave and P -wave angular momentum states for the $\mathrm{K}^{+} \mathrm{K}^{-}$meson pair. We examine the effect of an S-wave component on the determination of the CP violating phase $2 \beta_{\mathrm{s}}$. Data from the B -factories indicate that an S -wave component of about 10% may be expected in the $\phi(1020)$ resonance region. We find that if this contribution is ignored in the analysis it could cause a bias in the measured value of $2 \beta_{\mathrm{s}}$ towards zero of the order of 10%. When including the $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave component we observe an increase in the statistical error on $2 \beta_{\mathrm{s}}$ by less than 15%. We also point out the possibility of measuring the sign of $\cos 2 \beta_{\mathrm{s}}$ by using the interference between the $\mathrm{K}^{+} \mathrm{K}^{-} \mathrm{S}$-wave and P -wave amplitudes to resolve the strong phase ambiguity. We conclude that the S -wave component can be properly taken into account in the analysis.

Keywords: B-Physics, CP violation

ArXiv EPrint: 0908.3627

Contents

1 Introduction
2 Time-dependent angular distributions in the decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$in- cluding S-wave contributions 1
3 Measuring $2 \beta_{\mathrm{s}}$ in the presence of a $K^{+} K^{-}$S-wave
4 Measuring $\cos 2 \beta_{\mathrm{s}}$ 6
5 Conclusions 9

1 Introduction

The decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow J / \psi \phi$ is a golden channel for the measurement of the $\mathrm{B}_{\mathrm{s}}^{0}$ mixing phase $-2 \beta_{\mathrm{s}}$ which is a very sensitive probe of new physics. It has been extensively studied [18]. In the decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$, followed by a two-body decay $\phi(1020) \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}$, the $\mathrm{K}^{+} \mathrm{K}^{-}$ meson pair is in an orbital P-wave amplitude. However, in the vicinity of the $\phi(1020)$ mass, the $\mathrm{K}^{+} \mathrm{K}^{-}$system can have contributions from other partial waves. The same comment holds for the $\mathrm{K}^{+} \mathrm{K}^{-}$system in the decay channels $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{S}}^{0}$ and $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{0}$. The BaBar experiment showed that in these decays the S -wave and P -wave contributions dominate in the mass range above threshold up to $1.1 \mathrm{GeV} / c^{2}[9,10]$. In both cases there is a dominant resonant $\phi(1020)$ contribution. In addition an S-wave $f_{0}(980)$ and a non-resonant contribution are found to be necessary to describe the data. These results motivated us to investigate the effects of a possible S -wave contribution to $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$in the $\phi(1020)$ mass region.

In the decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$the $\mathrm{K}^{+} \mathrm{K}^{-}$system can only arise from a $\mathrm{s} \overline{\mathrm{s}}$ quark pair while in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \mathrm{K}_{\mathrm{S}}^{0}$ and $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{0}$ it can have contributions from both $\mathrm{s} \overline{\mathrm{S}}$ and $\mathrm{d} \overline{\mathrm{d}}$. This makes it difficult to give a quantitative estimate for the S -wave component. In reference [11] the S-wave $\mathrm{K}^{+} \mathrm{K}^{-}$contribution under the $\phi(1020)$ peak is estimated to be $5-10 \%$ for decay modes in which the $\mathrm{K}^{+} \mathrm{K}^{-}$arises from an ss quark pair. In this study we consider an S-wave of similar magnitude and assess its impact on the determination of the weak mixing phase $-2 \beta_{\mathrm{s}}$.

2 Time-dependent angular distributions in the decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$ including S-wave contributions

We consider P - and S-wave amplitudes in the decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$where the invariant mass of the $\mathrm{K}^{+} \mathrm{K}^{-}$meson pair is in the $\phi(1020)$ mass region and the J / ψ meson decays
into a $\mu^{+} \mu^{-}$pair. The S-wave contribution can be non-resonant or due to the $\mathrm{f}_{0}(980)$ resonance ${ }^{1}$. We denote decay amplitudes for the $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$by $\mathbf{A}=\left(A_{0}, A_{\|}, A_{\perp}, A_{S}\right)$. Here $A_{0}, A_{\|}$and A_{\perp} are the three P-wave amplitudes consistent with the $\mathrm{K}^{+} \mathrm{K}^{-}$system decaying via the $\phi(1020)$ resonance. A_{S} is the amplitude for a possible S -wave contribution in the $\mathrm{K}^{+} \mathrm{K}^{-}$system. The amplitudes for the conjugate decay $\overline{\mathrm{B}}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$are denoted by $\overline{\mathbf{A}}=\left(\bar{A}_{0}, \bar{A}_{\|}, \bar{A}_{\perp}, \bar{A}_{S}\right)$, which, in the absence of direct CP violation, are related to \mathbf{A} by $A_{0}=\bar{A}_{0}, A_{\|}=\bar{A}_{\|}, A_{\perp}=-\bar{A}_{\perp}$ and $A_{S}=-\bar{A}_{S}$. Note that A_{0} and $A_{\|}$are CP-even whereas A_{\perp} and A_{S} are CP-odd. The amplitudes $\left(A_{0}, A_{\|}, A_{\perp}\right)$ and the amplitude A_{S} may have different dependences on the mass $m_{\mathrm{K}^{+} \mathrm{K}^{-}}$of the $\mathrm{K}^{+} \mathrm{K}^{-}$system. However, in sufficiently small bins of $m_{\mathrm{K}^{+} \mathrm{K}^{-}}$, such as the narrow mass region around the $\phi(1020)$ resonance, the dependences of the amplitudes on $m_{\mathrm{K}^{+} \mathrm{K}^{-}}$can be neglected.

We define the total P-wave strength, $A_{P}^{2} \equiv\left|A_{0}\right|^{2}+\left|A_{\| \mid}\right|^{2}+\left|A_{\perp}\right|^{2}$, the longitudinal and perpendicular polarisation fractions relative to the P -wave strength $R_{\|} \equiv\left|A_{\|}\right|^{2} / A_{P}^{2}$, and $R_{\perp} \equiv\left|A_{\perp}\right|^{2} / A_{P}^{2}$, and the S-wave fraction, $R_{S} \equiv\left|A_{S}\right|^{2} /\left(A_{P}^{2}+\left|A_{S}\right|^{2}\right)$. The phases of these decay amplitudes are defined by $A_{j}=\left|A_{j}\right| e^{i \delta_{j}}$, where $j=0, \|, \perp, S$. As only the relative strong phase differences can be measured we adopt the convention $\delta_{0}=0$.

An angular analysis is required to disentangle the different CP eigenstates on a statistical basis. The angular observables are denoted as the helicity angles $\Omega=\left(\theta_{l}, \theta_{K}, \varphi\right)$. Here θ_{l} is the angle between the μ^{+}momentum and the direction opposite to the $\mathrm{B}_{\mathrm{s}}^{0}$ momentum in the J / ψ rest frame; θ_{K} is the angle between the K^{+}momentum and the direction opposite to the $\mathrm{B}_{\mathrm{s}}^{0}$ momentum in the rest frame of the $\mathrm{K}^{+} \mathrm{K}^{-}$system; φ is the angle between the decay planes of the $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}$and the $\mathrm{K}^{+} \mathrm{K}^{-}$pair, when going from the positive kaon to the positive lepton with a rotation around the opposite direction of the $\mathrm{B}_{\mathrm{s}}^{0}$ momentum in the J / ψ rest frame.

The differential decay rate for a $\mathrm{B}_{\mathrm{s}}^{0}$ meson produced at time $t=0$ decaying as $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow$ $\mathrm{J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$at proper time t is given by

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}\right)}{\mathrm{d} t \mathrm{~d} \cos \theta \mathrm{~d} \cos \psi \mathrm{~d} \varphi} \propto \sum_{k=1}^{10} h_{k}(t) f_{k}(\Omega), \tag{2.1}
\end{equation*}
$$

whereas the differential decay rate for an initial $\overline{\mathrm{B}}_{\mathrm{s}}^{0}$ meson is given by

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma\left(\overline{\mathrm{~B}}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}\right)}{\mathrm{d} t \mathrm{~d} \cos \theta \mathrm{~d} \cos \psi \mathrm{~d} \varphi} \propto \sum_{k=1}^{10} \overline{h_{k}}(t) f_{k}(\Omega) \tag{2.2}
\end{equation*}
$$

Each of the $h_{k}(t), \overline{h_{k}}(t)$ and $f_{k}(\Omega)$ for $k=1-10$ are defined in table 1 . In total there are four amplitude-squared terms for the three polarisations of the P -waves and the S -wave component plus six interference terms.

The time-dependence of the ten functions $h_{k}(t)$ for an initial $\mathrm{B}_{\mathrm{s}}^{0}$ meson state can be

[^0]| k | $h_{k}(t)$ | $\bar{h}_{k}(t)$ | $f_{k}\left(\theta_{l}, \theta_{K}, \varphi\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | $\left\|A_{0}(t)\right\|^{2}$ | $\left\|\bar{A}_{0}(t)\right\|^{2}$ | $4 \sin ^{2} \theta_{l} \cos ^{2} \theta_{K}$ |
| 2 | $\left\|A_{\\| \mid}(t)\right\|^{2}$ | $\left\|\bar{A}_{\\| \mid}(t)\right\|^{2}$ | $\left(1+\cos ^{2} \theta_{l}\right) \sin ^{2} \theta_{K}-\sin ^{2} \theta_{l} \sin ^{2} \theta_{K} \cos 2 \varphi$ |
| 3 | $\left\|A_{\perp}(t)\right\|^{2}$ | $\left\|\bar{A}_{\perp}(t)\right\|^{2}$ | $\left(1+\cos ^{2} \theta_{l}\right) \sin ^{2} \theta_{K}+\sin ^{2} \theta_{l} \sin ^{2} \theta_{K} \cos 2 \varphi$ |
| 4 | $\Im\left\{A_{\\| \mid}^{*}(t) A_{\perp}(t)\right\}$ | $\Im\left\{\bar{A}_{\\| \mid}^{*}(t) \bar{A}_{\perp}(t)\right\}$ | $2 \sin ^{2} \theta_{l} \sin ^{2} \theta_{K} \sin 2 \varphi$ |
| 5 | $\Re\left\{A_{0}^{*}(t) A_{\\| \mid}(t)\right\}$ | $\Re\left\{\bar{A}_{0}^{*}(t) \bar{A}_{\\| \mid}(t)\right\}$ | $-\sqrt{2} \sin 2 \theta_{l} \sin 2 \theta_{K} \cos \varphi$ |
| 6 | $\Im\left\{A_{0}^{*}(t) A_{\perp}(t)\right\}$ | $\Im\left\{\bar{A}_{0}^{*}(t) \bar{A}_{\perp}(t)\right\}$ | $\sqrt{2} \sin 2 \theta_{l} \sin 2 \theta_{K} \sin \varphi$ |
| 7 | $\left\|A_{S}(t)\right\|^{2}$ | $\left\|\bar{A}_{S}(t)\right\|^{2}$ | $\frac{4}{3} \sin ^{2} \theta_{l}$ |
| 8 | $\Re\left\{A_{S}^{*}(t) A_{\\| \mid}(t)\right\}$ | $\Re\left\{\bar{A}_{S}^{*}(t) \bar{A}_{\\| \mid}(t)\right\}$ | $-\frac{2}{3} \sqrt{6} \sin 2 \theta_{l} \sin \theta_{K} \cos \varphi$ |
| 9 | $\Im\left\{A_{S}^{*}(t) A_{\perp}(t)\right\}$ | $\Im\left\{\bar{A}_{S}^{*}(t) \bar{A}_{\perp}(t)\right\}$ | $\frac{2}{3} \sqrt{6} \sin 2 \theta_{l} \sin \theta_{K} \sin \varphi$ |
| 10 | $\Re\left\{A_{S}^{*}(t) A_{0}(t)\right\}$ | $\Re\left\{\bar{A}_{S}^{*}(t) \bar{A}_{0}(t)\right\}$ | $\frac{8}{3} \sqrt{3} \sin ^{2} \theta_{l} \cos \theta_{K}$ |

Table 1. Definition of the functions $h_{k}(t), \overline{h_{k}}(t)$ and $f_{k}\left(\theta_{l}, \theta_{K}, \varphi\right)$ of eq. 2.1 and 2.2.
written as:

$$
\begin{align*}
& \left|A_{0}(t)\right|^{2}=\left|A_{0}\right|^{2} \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[\cosh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)-\cos \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.+\sin \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.3}\\
& \left|A_{\|}(t)\right|^{2}=\left|A_{\|}\right|^{2} \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[\cosh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)-\cos \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.+\sin \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.4}\\
& \left|A_{\perp}(t)\right|^{2}=\left|A_{\perp}\right|^{2} \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[\cosh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)+\cos \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.-\sin \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.5}\\
& \Im\left\{A_{\|}^{*}(t) A_{\perp}(t)\right\}=\left|A_{\|}\right|\left|A_{\perp}\right| \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[-\cos \left(\delta_{\perp}-\delta_{\|}\right) \sin \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.+\sin \left(\delta_{\perp}-\delta_{\|}\right) \cos \left(\Delta m_{\mathrm{s}} t\right)-\cos \left(\delta_{\perp}-\delta_{\|}\right) \cos \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.6}\\
& \Re\left\{A_{0}^{*}(t) A_{\|}(t)\right\}=\left|A_{0} \| A_{\|}\right| \mathrm{e}^{-\Gamma_{\mathrm{s}} t} \cos \left(\delta_{\|}-\delta_{0}\right)\left[\cosh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)-\cos \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.+\sin \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.7}\\
& \Im\left\{A_{0}^{*}(t) A_{\perp}(t)\right\}=\left|A_{0}\right|\left|A_{\perp}\right| \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[-\cos \left(\delta_{\perp}-\delta_{0}\right) \sin \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.+\sin \left(\delta_{\perp}-\delta_{0}\right) \cos \left(\Delta m_{\mathrm{s}} t\right)-\cos \left(\delta_{\perp}-\delta_{0}\right) \cos \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.8}\\
& \left|A_{S}(t)\right|^{2}=\left|A_{S}\right|^{2} \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[\cosh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)+\cos \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.-\sin \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right], \tag{2.9}
\end{align*}
$$

	Δm_{s}	Γ_{s}	$\Delta \Gamma_{\mathrm{s}}$	δ_{0}	$\delta_{\\|}$	δ_{\perp}	$R_{\\|}$	R_{\perp}	R_{S}	δ_{S}	$2 \beta_{\mathrm{s}}$
Input	$17.8 \mathrm{ps}^{-1}$	$0.68 \mathrm{ps}^{-1}$	$0.05 \mathrm{ps}^{-1}$	0	-2.93	2.91	0.207	0.233	vary	vary	vary
Fit	fix	fix	fix	fix	float	float	float	float	float ${ }^{*}$	float	float

${ }^{*} R_{S}$ is fixed to 0 when the S -wave component is neglected.
Table 2. Values of the physical parameters used in the generation of signal decays and how these parameters are treated in the fit.

$$
\begin{align*}
& \Re\left\{A_{S}^{*}(t) A_{\|}(t)\right\}=\left|A_{S} \| A_{\|}\right| \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[-\sin \left(\delta_{\|}-\delta_{S}\right) \sin \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right. \\
& \left.\quad+\cos \left(\delta_{\|}-\delta_{S}\right) \cos \left(\Delta m_{\mathrm{s}} t\right)-\sin \left(\delta_{\|}-\delta_{S}\right) \cos \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right] \tag{2.10}\\
& \begin{aligned}
\Im\left\{A_{S}^{*}(t) A_{\perp}(t)\right\}=\mid A_{S} \| & A_{\perp} \left\lvert\, \mathrm{e}^{-\Gamma_{\mathrm{s}} t} \sin \left(\delta_{\perp}-\delta_{S}\right)\left[\cosh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)+\cos \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right.\right. \\
& \left.\quad-\sin \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right]
\end{aligned} \\
& \begin{aligned}
\Re\left\{A_{S}^{*}(t) A_{0}(t)\right\}=\mid A_{S} \| & A_{0} \left\lvert\, \mathrm{e}^{-\Gamma_{\mathrm{s}} t}\left[-\sin \left(\delta_{0}-\delta_{S}\right) \sin \Phi \sinh \left(\frac{\Delta \Gamma_{\mathrm{s}} t}{2}\right)\right.\right. \\
& \left.+\cos \left(\delta_{0}-\delta_{S}\right) \cos \left(\Delta m_{\mathrm{s}} t\right)-\sin \left(\delta_{0}-\delta_{S}\right) \cos \Phi \sin \left(\Delta m_{\mathrm{s}} t\right)\right]
\end{aligned} \tag{2.11}
\end{align*}
$$

where $\Phi=-2 \beta_{\mathrm{s}}, \Delta m_{\mathrm{s}}, \Delta \Gamma_{\mathrm{s}}$ and Γ_{s} denote the weak mixing phase, mass difference, decay width difference and average decay width of the $\mathrm{B}_{\mathrm{s}}^{0}-\overline{\mathrm{B}}_{\mathrm{s}}^{0}$ system, respectively. Here we have assumed that each of the decay amplitudes in \mathbf{A} is dominated by a single weak phase, therefore a common effective $2 \beta_{\mathrm{s}}$ can be used for all CP eigenstates. The time evolution functions $\overline{h_{k}}(t)$ for an initial $\overline{\mathrm{B}}_{\mathrm{s}}^{0}$ meson can be obtained by reversing the sign of each term proportional to $\sin \left(\Delta m_{\mathrm{s}} t\right)$ or $\cos \left(\Delta m_{\mathrm{s}} t\right)$ in $h_{k}(t)$.

3 Measuring $2 \beta_{\mathrm{s}}$ in the presence of a $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave

In this section we investigate how the measurement of $2 \beta_{\mathrm{s}}$ is affected by the presence of a possible $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave contribution. We use Monte Carlo simulated toy data based on the differential decay rate expressions of section 2 . We generate signal decays only and ignore backgrounds underneath the $\mathrm{B}_{\mathrm{s}}^{0}$ mass peak as well as all detector effects. The inclusion of these effects does not alter the qualitative results of this study.

We assume a tagging efficiency $\epsilon_{\mathrm{tag}}=56 \%$ and a wrong tag probability $\omega_{\mathrm{tag}}=33 \%$, which correspond approximately to the expected flavour tagging performance for this channel at the LHCb experiment [12]. In table 2 we summarize the values of the physical parameters used to generate the toy data sets.

We generate 500 data sets for different scenarios where we vary the values of the S -wave fraction R_{S} and its phase δ_{S} and the weak phase $-2 \beta_{\mathrm{s}}$. Each data set contains 30000 signal events corresponding to approximately one quarter of a nominal LHCb year of $2 \mathrm{fb}^{-1}$.

We perform fits to each data set where $2 \beta_{\mathrm{s}}, R_{S}, \delta_{S}, R_{\|}, \delta_{\|}, R_{\perp}, \delta_{\perp}$ are free parameters and all other parameters are kept fixed. We also perform fits where the S -wave component

	Float R_{S} in fit	Fix R_{S} to 0 in fit
$R_{S}=0$		$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.045, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.038$
$R_{S}=0.1, \delta_{S}=\pi / 2$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.048, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.035$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.045, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.032$
$R_{S}=0.1, \delta_{S}=0$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.054, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.040$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.048, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.036$
$R_{S}=0.05, \delta_{S}=\pi / 2$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.048, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.040$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.045, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.036$
$R_{S}=0.05, \delta_{S}=0$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.055, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.038$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.047, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.032$

Table 3. Statistical errors and mean values of $2 \beta_{\mathrm{s}}$ from 500 fits for different scenarios with $2 \beta_{\mathrm{s}}=$ 0.0368 . The errors on $\sigma\left(2 \beta_{\mathrm{s}}\right)$ and mean $\left(2 \beta_{\mathrm{s}}\right)$ are approximately 0.003 and 0.002 , respectively. The same data sets are used to obtain the results in the second and third columns.

	Float R_{S} in fit	Fix R_{S} to 0 in fit
$R_{S}=0$		$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.044, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.198$
$R_{S}=0.1, \delta_{S}=\pi / 2$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.052, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.199$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.047, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.166$
$R_{S}=0.1, \delta_{S}=0$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.056, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.202$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.049, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.170$
$R_{S}=0.05, \delta_{S}=\pi / 2$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.049, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.197$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.048, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.182$
$R_{S}=0.05, \delta_{S}=0$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.053, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.198$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.048, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.180$

Table 4. Statistical errors and mean values of $2 \beta_{\mathrm{s}}$ from 500 fits for different scenarios with $2 \beta_{\mathrm{s}}=0.2$. The errors on $\sigma\left(2 \beta_{\mathrm{s}}\right)$ and mean $\left(2 \beta_{\mathrm{s}}\right)$ are approximately 0.003 and 0.002 , respectively. The same data sets are used to obtain the results in the second and third columns.
is present in the generated toy data, but ignored in the fit (R_{S} is set to 0) in order to investigate the bias in the determination of $2 \beta_{\mathrm{s}}$.

The results of these fits for the statistical error and mean value of the weak phase $-2 \beta_{\mathrm{s}}$ are summarized in table 3,4 and 5 for several different scenarios with $-2 \beta_{\mathrm{s}}=-0.0368$, $-2 \beta_{\mathrm{s}}=-0.2$ and $-2 \beta_{\mathrm{s}}=-0.5$, respectively. As an example, in figure 1 we show the distributions of the fitted values of $-2 \beta_{\mathrm{s}}$ for $R_{S}=0.1, \delta_{S}=\pi / 2$ and $-2 \beta_{\mathrm{s}}=-0.5$ for both the S-wave fraction R_{S} fixed to zero and R_{S} left free in the fits. In figure 2 we show the distributions of the fitted values of R_{S} and the strong phase of the S-wave component δ_{S} for the same case with R_{S} left free in the fit. It can be seen that when all parameters are fitted the results are unbiased, but when it is wrongly assumed that $R_{S}=0$, the result for $-2 \beta_{s}$ acquires a bias with regard to the true input value.

Figure 3 shows the bias in $-2 \beta_{\mathrm{s}}$ from neglecting an S-wave component with $R_{S}=0.1$ and $\delta_{S}=\pi / 2$ versus the value of $-2 \beta_{\mathrm{s}}$ used to generate the data sets. A linear dependence is observed, which demonstrates that the bias in $-2 \beta_{\mathrm{s}}$ is proportional to the true value of $-2 \beta_{\mathrm{s}}$. From tables 3,4 and 5 we observe biases for these scenarios which range from $7-17 \%$ in the measurement of $2 \beta_{\mathrm{s}}$ if an S-wave component is present, but left unaccounted for in the fits. The bias moves the measured value of $2 \beta_{\mathrm{s}}$ towards zero. This implies that the neglected CP-odd S-wave contribution has a bigger probability to be mis-identified as the CP-even longitudinal or parallel components than as the CP-odd perpendicular component. Therefore, although the bias from neglecting an S-wave contribution is unlikely to lead to false signal of new physics, it will cause a loss of sensitivity to new physics. On the other hand, including the S -wave in the fit removes the bias in the central value of $2 \beta_{\mathrm{s}}$ at a cost of an increase of less than 15% in the statistical error.

	Float R_{S} in fit	Fix R_{S} to 0 in fit
$R_{S}=0$		$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.051, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.501$
$R_{S}=0.1, \delta_{S}=\pi / 2$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.059, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.501$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.053, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.415$
$R_{S}=0.1, \delta_{S}=0$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.061, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.501$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.052, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.417$
$R_{S}=0.05, \delta_{S}=\pi / 2$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.051, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.506$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.048, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.463$
$R_{S}=0.05, \delta_{S}=0$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.053, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.501$	$\sigma\left(2 \beta_{\mathrm{s}}\right)=0.049, \operatorname{Mean}\left(2 \beta_{\mathrm{s}}\right)=0.461$

Table 5. Statistical errors and mean values of $2 \beta_{\mathrm{s}}$ from 500 fits for different scenarios with $2 \beta_{\mathrm{s}}=0.5$. The errors on $\sigma\left(2 \beta_{\mathrm{s}}\right)$ and mean $\left(2 \beta_{\mathrm{s}}\right)$ are approximately 0.003 and 0.002 , respectively. The same data sets are used to obtain the results in the second and third columns.

Figure 1. Distributions of the fitted values of $-2 \beta_{s}$ for the scenario $R_{S}=0.1, \delta_{S}=\pi / 2,2 \beta_{\mathrm{s}}=0.5$. The left and right plots are obtained with or without fixing R_{S} to 0 in fitting the data, respectively.

Figure 2. Distributions of the fitted values of R_{S} and δ_{S} for the scenario $R_{S}=0.1, \delta_{S}=\pi / 2,2 \beta_{\mathrm{s}}=$ 0.5 without fixing R_{S} to 0 in fitting the data.

4 Measuring $\cos 2 \beta_{\text {s }}$

In eq. (2.1) and (2.2) one observes that the differential decay rates are invariant under the transformation

$$
\begin{equation*}
\left(\delta_{\|}-\delta_{0}, \delta_{\perp}-\delta_{0}, \delta_{S}-\delta_{0},-2 \beta_{\mathrm{s}}, \Delta \Gamma_{\mathrm{s}}\right) \leftrightarrow\left(\delta_{0}-\delta_{\|}, \pi+\delta_{0}-\delta_{\perp}, \delta_{0}-\delta_{S}, \pi-\left(-2 \beta_{\mathrm{s}}\right),-\Delta \Gamma_{\mathrm{s}}\right) \tag{4.1}
\end{equation*}
$$

As a consequence the measurement of $2 \beta_{\mathrm{s}}$ is subject to a two-fold ambiguity, which is

Figure 3. The bias in $-2 \beta_{\mathrm{s}}$ from neglecting an S-wave component with $R_{S}=0.1$ and $\delta_{S}=\pi / 2$ versus the value of $-2 \beta_{\mathrm{s}}$ used to generate the data sets. The bias is the difference of the mean of the fitted to the generated $-2 \beta_{\mathrm{s}}$ values. A linear fit is superimposed on the graph.
equivalent to $\cos 2 \beta_{\mathrm{s}}$ transforming into $-\cos 2 \beta_{\mathrm{s}}$. A measurement of $\cos 2 \beta_{\mathrm{s}}$ including its sign would allow us to resolve this ambiguity.

If the interference between the P -wave and S -wave amplitudes were to be significant in the $\phi(1020)$ mass region, we could use this effect to measure $\cos 2 \beta_{\mathrm{s}}$, in the same way as BaBar measured $\cos 2 \beta$ in $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{S}}^{0} \pi^{0}$ [13]. This requires measuring $\delta_{S}-\delta_{0}$, the strong phase difference between the S -wave and the longitudinal P -wave, as a function of the $\mathrm{K}^{+} \mathrm{K}^{-}$mass in the $\phi(1020)$ mass region. When plotting this function, two branches are expected with each corresponding to a different solution for the weak phase (see figure 4 left). It is straightforward to choose the physical solution since the phase of the P-wave Breit-Wigner amplitude is expected to rise rapidly through the $\phi(1020)$ mass region (dashed red curve in figure 4 right), while the phase of the S-wave amplitude, which can be described either by a coupled channel Breit-Wigner function in case of an f_{0} contribution or by a constant term in case of a non-resonant contribution, is expected to vary relatively slowly (dotted green curve in figure 4 right), resulting in $\delta_{S}-\delta_{0}$ rapidly falling with increasing $\mathrm{K}^{+} \mathrm{K}^{-}$mass (solid blue curves in figure 4).

Below we use a Monte Carlo simulated toy data set to demonstrate the feasibility of this method in measuring the sign of $\cos 2 \beta_{\mathrm{s}}$. We generate $30000 \mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$events in the $\mathrm{K}^{+} \mathrm{K}^{-}$mass region between 1 and $1.05 \mathrm{GeV} / c^{2}$, roughly corresponding to $0.5 \mathrm{fb}^{-1}$ of integrated luminosity. The P -wave and f_{0} contributions are included coherently. The values of the parameters used to generate the toy data set are the same as in table 2 except that we set $-2 \beta_{\mathrm{s}}=-0.0368$, and that the values of both R_{S} and δ_{S} depend on the $\mathrm{K}^{+} \mathrm{K}^{-}$ mass. The f_{0} contribution accounts for about 10% of the total decay rate in the given mass region, as is shown in figure 5 .

The data sample is divided into bins in the $\mathrm{K}^{+} \mathrm{K}^{-}$mass. For each bin i, two parameters $\delta_{S, i}$ and $R_{S, i}$ are used to represent the average strong phase and the fraction of the f_{0} contribution. Both $\sin 2 \beta_{\mathrm{s}}$ and $\cos 2 \beta_{\mathrm{s}}$ are treated as independent free parameters. Common free parameters $\sin 2 \beta_{\mathrm{s}}, \cos 2 \beta_{\mathrm{s}}, R_{\|}, R_{\perp}, \delta_{\|}, \delta_{\perp}, \Gamma_{s}$ and $\Delta \Gamma_{s}$ are used for all bins. Note that we still adopt the convention $\delta_{0}=0$ as only the relative phase differences in each bin can

Figure 4. An example to illustrate the dependence of the strong phase of the S -wave δ_{S}, of the strong phase of the longitudinal P-wave δ_{0}, and of their difference $\delta_{S}-\delta_{0}$, on the $\mathrm{K}^{+} \mathrm{K}^{-}$mass. Left: the solid blue curve is the physical solution for $\delta_{S}-\delta_{0}$ and the dashed black curve shows the mirror solution. Right: the dashed red, dotted green and solid blue curves are for δ_{0}, δ_{S}, and $\delta_{S}-\delta_{0}$, respectively.

Figure 5. The data points correspond to the $\mathrm{K}^{+} \mathrm{K}^{-}$mass distribution of a generated sample of $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$events including $10 \% \mathrm{f}_{0}$ contribution in the mass region. The dotted red curve indicates the f_{0} contribution.
be measured. A combined fit to the time-dependent angular distributions of all the bins is performed to extract these free parameters. The fitted values of the strong phase difference $\delta_{S}-\delta_{0}$ versus the $\mathrm{K}^{+} \mathrm{K}^{-}$mass are plotted in figure 6 . The two branches correspond to opposite values of $\cos 2 \beta_{\mathrm{s}}$. Just as expected, the branch corresponding to the true solution decreases rapidly around the nominal $\phi(1020)$ mass. Choosing this branch leads to the unique solution

$$
\begin{equation*}
\sin 2 \beta_{\mathrm{s}}=0.043 \pm 0.05, \quad \cos 2 \beta_{\mathrm{s}}=1.05 \pm 0.08 \tag{4.2}
\end{equation*}
$$

which gives the ambiguity-free result

$$
\begin{equation*}
-2 \beta_{\mathrm{s}}=-0.043 \pm 0.05 \tag{4.3}
\end{equation*}
$$

In this example, the measured $-2 \beta_{\mathrm{s}}$ is separated from $\pi-\left(-2 \beta_{\mathrm{s}}\right)$ by 13σ, therefore the discrete ambiguity in $2 \beta_{\mathrm{s}}$ is completely resolved. Although the actual measurement pre-

Figure 6. The fitted values of $\delta_{S}-\delta_{0}$ versus $\mathrm{K}^{+} \mathrm{K}^{-}$mass are shown in red and black data points, corresponding to opposite values of $\cos 2 \beta_{\mathrm{s}}$. The blue curve shows the dependence of $\delta_{S}-\delta_{0}$ on $\mathrm{K}^{+} \mathrm{K}^{-}$mass implemented in simulation.
cision in $\cos 2 \beta_{\mathrm{s}}$ will depend on the size of the f_{0} contribution as well as background, the possibility to resolve the ambiguity in $-2 \beta_{\mathrm{s}}$ using this method is very promising.

5 Conclusions

In the decay $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{+} \mathrm{K}^{-}$we expect that a $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave contribution in the narrow $\phi(1020)$ mass region could be as large as 10%. The full differential decay rates for this decay including the S -wave contribution have been presented. We have considered a range of scenarios which include S-wave components of 5% and 10%. We have shown that within these scenarios, if an S-wave component is ignored in the analysis, the measurement of the weak phase $-2 \beta_{\mathrm{s}}$ would be biased by between 7% and 17% towards zero. We have demonstrated that by properly allowing for this S-wave component in the fit, an unbiased measurement of $2 \beta_{\mathrm{s}}$ may be obtained with a slightly increased statistical error. Finally, we have shown that the interference between the $\mathrm{K}^{+} \mathrm{K}^{-}$S-wave and P -wave amplitudes can be used to resolve the two-fold ambiguity in the measurement of the weak phase $-2 \beta_{\mathrm{s}}$.

Acknowledgments

The authors would like to acknowledge the LHCb colleagues for useful and stimulating discussions. We particularly thank Tim Gershon, Olivier Leroy and Guy Wilkinson for valuable suggestions.

References

[1] M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833] [SPIRES].
[2] P. Ball and R. Fleischer, Probing new physics through B mixing: status, benchmarks and prospects, Eur. Phys. J. C 48 (2006) 413 [hep-ph/0604249] [SPIRES].
[3] P. Clarke, C. Mclean and A. Osorio-Oliveros, Sensitivity studies to β_{s} and $\Delta \Gamma_{s}$ using the full $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi$ angular analysis at the LHCb, CERN-LHCB-2007-101.
[4] M. Ciuchini et al., Next-to-leading order strong interaction corrections to the $\Delta(F)=2$ effective hamiltonian in the MSSM, JHEP 09 (2006) 013 [hep-ph/0606197] [SPIRES].
[5] A. Lenz and U. Nierste, Theoretical update of $B_{s}-\bar{B}_{s}$ mixing, JHEP 06 (2007) 072 [hep-ph/0612167] [SPIRES].
[6] Z. Ligeti, M. Papucci and G. Perez, Implications of the measurement of the $B_{s}^{0}-\bar{B}_{s}^{0}$ mass difference, Phys. Rev. Lett 97 (2006) 101801 [hep-ph/0604112] [SPIRES].
[7] CDF collaboration, T. Aaltonen et al., First flavor-tagged determination of bounds on mixing-induced CP-violation in $B_{s}^{0} \rightarrow J / \psi \phi$ decays, Phys. Rev. Lett. 100 (2008) 161802 [arXiv:0712.2397] [SPIRES].
[8] D0 collaboration, V.M. Abazov et al., Measurement of B_{s}^{0} mixing parameters from the flavor-tagged decay $B_{s}^{0} \rightarrow J / \psi \phi$, Phys. Rev. Lett. 101 (2008) 241801 [arXiv:0802.2255] [SPIRES].
[9] BABAR collaboration, B. Aubert et al., Measurement of CP-violating asymmetries in the $B^{0} \rightarrow K^{+} K^{-} K_{s}^{0}$ Dalitz plot, arXiv:0808.0700 [SPIRES].
[10] BABAR collaboration, B. Aubert et al., Amplitude analysis of the decay $D^{0} \rightarrow K^{-} K^{+} \pi^{0}$, Phys. Rev. D 76 (2007) 011102 [arXiv:0704.3593] [SPIRES].
[11] S. Stone and L. Zhang, S-waves and the measurement of CP-violating phases in B_{s} decays, Phys. Rev. D 79 (2009) 074024 [arXiv:0812.2832] [SPIRES].
[12] M. Calvi, O. Leroy and M. Musy, Flavour tagging algorithms and performances in LHCb , CERN-LHCB-2007-058 [SPIRES].
[13] BABAR collaboration, B. Aubert et al., Ambiguity-free measurement of $\cos (2 \beta)$: time-integrated and time-dependent angular analyses of $B \rightarrow J / \psi K \pi$, Phys. Rev. D 71 (2005) 032005 [hep-ex/0411016] [SPIRES].

[^0]: ${ }^{1}$ The mass dependence of the $f_{0}(980)$ is distorted as the central value of the resonance is below threshold.

